9873

0/1-Polytopes in 3D

The convex hull of a set is the smallest convex set that contains . For instance, the convex hull of three distinct points is a triangle or a line segment.
A 0/1-polytope is the convex hull of a set of points with coordinates 0 or 1. In other words, a 0/1-polytope is the convex hull of a subset of vertices of a hypercube (the generalization of a cube to any number of dimensions).
A 3D cube has eight vertices, so it has subsets of vertices. This Demonstration shows the corresponding 256 0/1-polytopes.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

In 2D, there are four vertices and convex sets; in 4D, the hypercube has 16 vertices, so there are convex hulls. Neither the 2D nor 4D case is shown here. The 2D case is too easy; the 4D examples would be interesting to project into 3D, say into the 3-space orthogonal to the vector .
Reference
[1] H. Ziegler, Lectures on Polytopes, New York: Springer, 1995 pp. 19–22.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+