9853

2D Quantum Problem: Particle in a Disk

The wave functions of a quantum particle of mass confined to a disk of radius in the - plane are derived. These functions in polar coordinates are two-dimensional solutions of the Schrödinger equation with the potential . There is an infinite number of functions that fulfill the boundary condition , depend on two independent integer quantum numbers and . This Demonstration shows the oscillating behavior of the (unnormalized) probability density of a particle with different energy states inside the disk in the interval , . The ground state is characterized by the quantum number ; excited states have .

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The eigenvalue equation for the Hamiltonian reads, in polar coordinates , : . In the quantum-mechanical position basis (-representation), the momentum operator ("nabla" operator), so that the energy eigenvalue equation is transformed into a partial differential equation; is Planck's constant . The unique solutions regular at satisfying the boundary condition are Bessel functions of integer order : , where represent the zero of the Bessel function , . The integers give the components of the angular momentum . The wave-mechanical probability densities are oscillating functions and show analogous behavior to those of corresponding rectangular potential problems in one, two, and three dimensions, respectively.
References
[1] J. J. Sakurai, Modern Quantum Mechanics, Reading, MA: Addison–Wesley Publishing Company, 1995.
[2] L. D. Landau and E. M. Lifschitz, Quantum Mechanics, Reading, MA: Addison-Wesley Publishing Company, 1958.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+