10176

# A Dissection of a Prolate Golden Rhombohedron

This Demonstration shows a dissection of a prolate golden rhombohedron into smaller golden rhombohedra.

### DETAILS

"A rhombohedron is a parallelepiped bounded by six congruent rhombs. It has two opposite vertices at which the three face-angles are equal; it is said to be acute or obtuse according to the nature of these angles. A golden rhombohedron has faces whose diagonals are in the golden ratio :1." [1]. The volumes of A6 (the acute rhombohedron) and O6 (the obtuse rhombohedron) are also in the ratio :1.
The Fibonacci sequence 1, , 1+, 1+2, 2+3, 3+5, 5+8, 8+13, … is equal to the geometric sequence 1, , , , , , , , … [2]. Taking the obtuse rhombohedron of volume 1, the obtuse rhombohedron whose edges are as long has volume . So there exists a dissection of O6 to one O6 and two A6.
On the other hand, the volume of A6 is , so there exists a dissection of the solid to two O6 and three A6. But so there is a dissection of A6 to O6, O6, and A6.
Finally, it is possible to dissect O6 to 1/ O6 and two 1/ A6. This Demonstration illustrates a dissection of A6 to O6, A6, 1/ O6, and two 1/ A6. There is a three-piece dissection of a parallelepiped to A6. There is a four-piece dissection of the bottom parallelepiped to O6. The blue and the red parallelepipeds are 1/ A6. The parallelepiped with the magenta part is similar to the bottom parallelepiped, so there exists a four-piece dissection of the parallelepiped to 1/O6.
References:
[1] W. W. Rouse Ball, H. S. M. Coxeter, Mathematical Recreations and Essays, 13th ed., New York: Dover Publications, 1987 p. 161.
[2] M. Gardner, Aha! Gotcha: Paradoxes to Puzzle and Delight, San Francisco: W. H. Freeman, 1982 (Slovenian edition cited, 1992 p. 94).
[3] I. Hafner, T. Zitko, "Introduction to Golden Rhombic Polyhedra," Visual Mathematics, 4(2), 2002.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.