10217

# A Double Exponential Equation

Since and , there are points on the graphs of and where . These graphs are the special cases of where and . All points with can be found as intersections of the graph with the lines with slope . In this case, parametric equations in terms of have simple formulas.
The graph of is black. The graph of interest, where , is blue for and red for , and is the graph of a function . The intersection points with and , for , and corresponding points on , are plotted.
It is interesting to see that when is varied between 0 and 2, the graph of bows from concave up to concave down, and appears to be a line segment from to for some . The graphs of and are shown to help you decide whether the graph of for this really is straight. The special satisfies .
The case is especially interesting because then the equation is equivalent to , which has a solution and . (The slider for can take values from -2 to 5.)

### DETAILS

Assume . Conveniently, iff iff iff . Thus, is on the graph of where iff and , where .
Let and . Then and , and are parametric equations for the graph of . Since the graph of is symmetric with respect to , and .
Parametric equations for the graphs of and are obtained by differentiating the identity . They are , , and , .
Where does the graph of meet the line ? Two ways to determine it are 1) observe it is the point such that , where , and 2) compute using L'Hospital's rule. You will find .
What are the domain and range of ? It is an interesting exercise in L'Hospital's rule to determine that and when and and when . By symmetry, the domain and range of are when and when .

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.