10230

# A Linear Homogeneous Second-Order Differential Equation with Constant Coefficients

This Demonstration shows how to solve a linear homogeneous differential equation with constant coefficients , where and are constant. First solve the characteristic equation . If and are two real roots of the characteristic equation, then the general solution of the differential equation is , where and are arbitrary constants. If , the general solution is . If , the general solution is .

### DETAILS

The homogeneous linear differential equation
where is a function of , has a general solution of the form
,
where , , ..., are linearly independent particular solutions of the equation and , , …, are arbitrary constants.
If the coefficients , , …, are constant, then the particular solutions are found with the aid of the characteristic equation
.
To each real root of the characteristic equation of multiplicity , there corresponds particular solutions , , …, .
To each pair of imaginary roots of multiplicity , there corresponds pairs of particular solutions
, ,
, ,
, .
Reference
[1] V. P. Minorsky, Problems in Higher Mathematics, Moscow: Mir Publishers, 1975 p. 261.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.