A Multiobjective Optimization of a Room Configuration

Designing a good room configuration is not a simple task. Even deciding whether one is better than another is often very difficult! This Demonstration is an example of a multiobjective optimization of a very simple building layout with two apartments (red and green), each having only two rooms (red: 1, 2; green: 3, 4) and a corridor. The layouts are ranked according to three criteria:
1) The size of the corridor (the blue grid)
2) The distance of room 3 from the southernmost edge of the layout
3) The geometrical complexity
For the rooms, the geometrical complexity is the total number of unique coordinates of all the corners of each room. If two rooms share a corner, it is counted only once; for the corridor, the geometrical complexity is the number of unshared vertices.
These three values are normalized, weighted, and combined into the aggregate objective function (AOF). You can change the weights to alter the importance of a given parameter; for example, "It is very important that room 3 (for the green apartment) is on the south AND that the corridor (of the whole layout) is as small as possible". The values of these parameters are shown for each layout. There are 247 different room configurations, but only the 12 best (according to a given AOF) are shown.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Related Curriculum Standards

US Common Core State Standards, Mathematics

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+