10182

# A Proof of Euler's Formula

Euler's formula states that for a map on the sphere, , where is the number of vertices, is the number of faces, and is the number of edges. This Demonstration shows a map in the plane (so the exterior face counts as a face). The formula is proved by deleting edges lying in a cycle (which causes and to each decrease by one) until there are no cycles left. Then one has a tree, and one can delete vertices of degree one and the edges connected to them until only a point is left. Each such move decreases and by one. So all the moves leave unchanged, but at the end and are each 1 and is 0, so must have been 2 at the start.

### PERMANENT CITATION

Contributed by: Stan Wagon (Macalester College)
 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.