9827

A Spatial Dynamic Jury Model

In this spatial and dynamic model of jury behavior, jurors initially vote to convict or acquit the defendant based on a random variable drawn from a distribution affected by: (1) the defendant's actual guilt or innocence, and (2) the location of each juror in a two-dimensional conceptual space that represents the juror's ability to accurately perceive the situation as well as his or her predilection towards conviction. On subsequent ballots (the second stage), the jurors revise their votes based on the weighted votes of the other jurors. The weights for each juror are determined by a distance measure between that juror and the other jurors and a "stubbornness factor" that gives a special weight to the juror's own prior vote. The balloting continues until a fixed point is reached or until ten ballots have been taken, at which point the jury is assumed to have reached exhaustion.
You can control both the initial location of the jurors within the space and various parameters that affect the dynamics of voting. The jurors displayed in the top graphic are locators that you can drag, provided the "draggable" control is set appropriately. Moving the jurors about alters the weights they place on the votes of their fellow jurors and may alter—sometimes quite dramatically—the evolution of balloting. Alternatively, you can reset the entire jury pool to random new positions by moving the "new juror positions" control. You can also potentially affect the final result by changing the laws relating to jury size, the minimum number of guilty votes needed to convict (conviction floor), and the maximum number of guilty votes consistent with acquittal (acquittal ceiling). Finally, you can also alter the dynamics of "persuasion" by changing the effect of distance on voting weights (distance effect), the relative weight the juror places on his or her own prior vote (stubbornness), and the weighted fraction of votes needed to convict before a juror will vote to convict on the next iteration (convict threshold).
The top graphic of the output shows the positions and votes of the jurors. Black is guilty and orange is innocent. The bottom graphic of the output shows a chronology of the ballots taken by the jury. The control labeled "ballot visualized" provides an alternative visualization of jury dynamics by letting you select the ballot with which the top graphic is associated.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Experiments done with this Demonstration suggest that the systems generally either rapidly reach a fixed point or go through very short cycles. Even with systems of size 18, complex behavior was not observed.
The system described by this model appears quite sensitive to the "weighted votes needed to convict" parameter. Even small changes in this parameter can tip the model and cause a cascade leading to a different final result.
One experiment permitted by this model would be to determine the probability that guilty defendants are acquitted or that innocent defendants are convicted as functions of: (1) legal rules relating to the size of the jury pool, the number of guilty votes needed to convict, and the number of guilty votes that prevent acquittal; and (2) factors that the judicial system might affect, such as the homogeneity of jury pools and the degree of deference jurors should pay to the votes of their colleagues.
A spatial dynamic jury model is featured in the "Guilt Trip" episode of the CBS television drama Numb3rs.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+