Akaike Criterion in Orbit Determination

Elliptic and circular orbits are found for points lying on an ellipse perturbed by Gaussian errors. The Akaike information criterion is then used to judge which of the models is more complex. The controls allow you to change the magnitude of the errors and the shape of the unperturbed curve.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


This Demonstration, based on the paper Kepler versus Akaike, uses the example of the Earth's orbit to show how the Akaike information criterion works for distinguishing between two models with different numbers of parameters. The points shown could be thought of as measurements of the planet's position relative to the Sun. The problem is that a circular orbit, predicting constant distance between the bodies, is always considered as the simpler one. However, the measurement error and the fact that the real orbit is not a circle causes the AIC to select the ellipse most of the time, even though it has more parameters.
For more information, see the Wikipedia entry for Akaike information criterion.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+