9887

Angular Momentum of a Rotating Rigid Body

The angular momentum of a rigid body with angular velocity is given by , where is the inertia tensor. This Demonstration shows the rotation of an axially symmetric ellipsoid rotating about a fixed angular velocity vector . The body axes , , (indicated by the red, green, and blue spheres) and the angular momentum rotate as functions of time. The space axes , , are indicated by the red, green, and blue arrows. The body’s height and radius can be adjusted, as can the angular velocity .

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The inertia tensor for a body of mass , uniformly distributed through an ellipsoid , is
; here we have set and .
This tensor is used to calculate the angular momentum in the body frame (with body axes , , fixed), which is then transformed to the space frame (with space axes , , fixed) by a rotation matrix. The inertia tensor and rotation are covered in the references below, and in the Wikipedia entry for "Moment of inertia".
References
[1] J. R. Taylor, "Rotational Motion of Rigid Bodies," Classical Mechanics, Herndon, VA: University Science Books, 2005 pp. 367–416.
[2] S. T. Thornton and J. B. Marion, "Dynamics of Rigid Bodies," Classical Dynamics of Particles and Systems, Pacific Grove, CA: Brooks/Cole, 2004 pp. 411–467.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+