9887

Approximating the Derivatives of a Function Using Chebyshev-Gauss-Lobatto Points

Consider the function defined by . Using the Chebyshev–Gauss–Lobatto points, it is possible to approximate the values of the two first derivatives of at these points.
This Demonstration plots , , and , as well as the error made if the first- and second-order derivatives of are approximated using Chebyshev–Gauss–Lobatto points.
As you increase the number of interior points , you can see how the error (e.g., for given by ) becomes insignificant.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

In the discrete Chebyshev–Gauss–Lobatto case, the interior points are given by . These points are the extremums of the Chebyshev polynomial of the first kind .
The Chebyshev derivative matrix at the quadrature points , , is given by
, , for , and for , and ,
where for and .
The matrix is then used as follows: and , where is a vector formed by evaluating at , , and and are the approximations of and at the .
References
[1] P. Moin, Fundamentals of Engineering Numerical Analysis, Cambridge, UK: Cambridge University Press, 2001.
[2] S. Biringen and C-Y. Chow, An Introduction to Computational Fluid Mechanics by Example, Hoboken, NJ: Wiley, 2011.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+