9716

Attractors of Iterated Affine Transform Systems

An iterated function system (IFS) maps a set of affine transforms on a point and the resulting images repeatedly. If the system contains functions, there are points after iterations and the number of points grows exponentially. To reduce the volume of data, instead of applying all of the functions of the system at each step, only one is chosen, according to some given probability. This Demonstration shows how the attractors for eight particular systems emerge as you increase the number of iterations. There are two astonishing things about IFS: first, the attractor does not depend on the initial point; second, the probabilities for each transform can concentrate the points in certain regions and improve the picture. Fractal structures can be explored with the zoom control.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Hutchinson demonstrates that, if the transformations are contracting (i.e., the determinant of the matrix is less than 1), there exists an attractor and it is unique (J. E. Hutchinson, "Fractals and self-similarity," Indiana Univ. Math Journal, 30, 1981 pp. 713-747).
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+