9464

Beraha's Conjecture and Cyclic Graphs

The chromatic polynomial of a graph gives the number of ways to color the graph with colors, such that no pair of connected vertices shares the same color.
Beraha's conjecture (due to Tutte) says that for each , the Beraha number is the limit of roots of at least one family of chromatic polynomials.
This Demonstration shows that:
1) All cyclic graphs of odd order have a root of their chromatic polynomial equal to .
2) For even order , let be the root with largest real part and positive imaginary part, and let be the complex conjugate root (the chromatic polynomial has real coefficients so complex roots come in conjugate pairs). Then the sequences and converge to as .

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+