10182

# Bifurcations in First-Order ODEs

A first-order autonomous ordinary differential equation (ODE) with a parameter has the general form . The fixed points are the values of for which . A bifurcation occurs when the number or the stability of the fixed points changes as system parameters change. The classical types of bifurcations that occur in nonlinear dynamical systems are produced from the following prototypical differential equations:
transcritical:
supercritical pitchfork:
subcritical pitchfork:
This Demonstration shows bifurcations of these nonlinear first-order ODEs as you vary the parameter .
The top figure shows the phase portrait, versus , with stable fixed points indicated by solid disks and unstable fixed points as open circles. The bottom figure shows the solutions, versus , starting from a number of initial states with stable fixed points indicated by solid lines and unstable fixed points as dashed lines. You can vary both the number of initial states and time duration, . Note how the fixed points and solutions change as bifurcations occur as you vary the parameter .

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.