10176

# Bolzano's Function

This Demonstration shows the graphs of the first seven approximations to a continuous nowhere differentiable function.

### DETAILS

Bolzano's function is the limit of functions defined in the following way, described in terms of their graphs. Each iteration consists of connected line segments. The first graph is the line from (0, 0) to (0, 1). Suppose that and are the endpoints of a segment in some iteration. In the next iteration the segment is replaced by a polygonal line joining the following points:
,
,  ,  ,  .
For details on Bolzano’s function, see:
V. Jarnik, Bolzano and the Foundations of Mathematical Analysis, Prague: Society of Czechoslovak Mathematicians and Physicists, 1981 pp. 67–81.
The history of continuous nowhere differentiable functions and the proof that Bolzano's function is an example of this kind can be found in:
J. Thim, "Continuous Nowhere Differentiable Functions," master's thesis, Lulea University of Technology, 2003.
M. Hyksova, "Karel Rychlik and Bernard Bolzano," (PDF).

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.