10170

# Bootstrap Percentile Confidence Intervals

Bootstrapping is a technique for finding confidence intervals directly by resampling. The first histogram shows the original sample. The second histogram is the resample drawn from the original sample with replacement. The third histogram is the bootstrap (or resampling) distribution of the statistic calculated from the resamples. Above the third histogram is the bootstrap percentile confidence interval (the central 95% of the bootstrap distribution). In all the histograms the bin height is the fraction of values in that bin.

### DETAILS

The one-population data is from 72 monthly totals of accidental deaths in the United States. The two-populations data is from body weights in kg of 97 male and 47 female cats. For the two-populations example the third histogram compares the two groups by calculating for each pair of resamples the difference between the statistic applied to the resample of the male cats minus the statistic applied to the resample of the female cats. Both datasets are from the example data included with Mathematica.
Resampling techniques such as bootstrapping have been growing in popularity since they can sometimes be used for samples that are small or not normal. Bootstrap confidence intervals can be calculated even when the distribution of a statistic is unknown or complicated.
Students should ask themselves why the bootstrap distribution for the median of the two-populations example realizes only certain values. Do you think that the confidence interval for the difference in medians is reliable for this particular example?

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.
 © 2015 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS
 Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX Download or upgrade to Mathematica Player 7EX I already have Mathematica Player or Mathematica 7+