9887

Bungee Jumping

The following second-order nonlinear differential equation models a bungee jump:
.
Here is the position of the jumper at time , is the mass of the jumper, is the gravitational constant, and is the damping coefficient due to air resistance.
A bungee cord acts like a spring when stretched, but it has no restoring force when "compressed". The restoring force of the bungee cord is thus modeled as follows: if , and if , where is the spring constant of the bungee cord.
With " and " selected, the Demonstration shows the position and the acceleration of the jumper at time . The dashed line shows the equilibrium solution, that is, the position of the jumper at the end of the jump. The natural length of the bungee cord is 100 ft, and the jump starts at a height of 100 ft.
You can change the weight of the jumper, the damping coefficient , and the spring constant of the bungee cord.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+