Center of an Equilateral Triangle Circumscribing a Given Parabola

If an equilateral triangle circumscribes a parabola, that is, its sides (extended if necessary) are tangent to the parabola, then its center moves along a straight line, which is none other than the parabola's directrix. To prove this was a question in the oral examination of the Ecole Polytechnique in 1928.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


A parabola is the locus of points equidistant from a given point (the focus) and a given line (the directrix). A proof could be obtained from projective geometry, where the tangents to the parabola themselves define a conic section in another space. But Mathematica computes the coordinates of the vertices and center of the triangle easily enough, starting from any tangent to the parabola. As a bonus, the computation yields that the vertices of this triangle are located on a hyperbola (see the blue dot on the red curve and observe the other vertices of the triangle).


    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+