10178

# Center of Mass of Disk with Circular Hole

This Demonstration computes the center of mass of a disk of radius 1 with a circular hole of radius located at a distance from the center of .
The surface area function integrates the difference between the circular edge of the disk and that of the hole up to some position on the axis.
The abscissa of the center of mass is computed as the value for which the integral is equal to zero.

### DETAILS

Since the disk and the hole are symmetrical with respect to the axis, the coordinate of the center of mass of the upper half is the coordinate of the center of mass of the entire disk and hole. Therefore, only the upper half needs to be considered.
The function
defines the difference between the disk's outer circle and the edge of the circular hole. This is the net surface area at .
The function is the total mass moment relative to .
Solving the equation for gives the abscissa of the center of mass.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.