Chaotic Attractor for the Solar Cycle

Initializing live version
Download to Desktop

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

The solar activity model comprises two nearly independent nonlinear dynamical systems [1]. Model A represents the oscillatory mechanism underlying the solar cycle, and Model B represents the main convective dynamo of the Sun [3].

[more]

Model A is a two-dimensional nonlinear system, an oscillator localized in the tachocline, , , where the parameters and are referred to as a growth rate of the oscillations and the characteristic oscillation frequency of the tachocline, respectively.

Model B is a Moore–Spiegel dynamical system that represents the turbulent convection dynamo produced by the convection zone, , , .

Here, to reproduce the kind of on/off intermittency displayed by the solar cycle, the chaotic oscillator in Model B drives Model A via a bifurcation parameter of a nonlinear oscillator with a Hopf bifurcation. The driving is represented by , where controls the instability of Model A, and and are constants. In particular, is seen as the constant demand rate of magnetic flux down from the convection zone. To make spots, has to be at least as large as .

To reproduce perturbations in the solar cycle during periods of no activity (intermittency) feedback is introduced in the form of [2], for .

The theoretical sunspot number, , is defined in [3], inspired by the Zurich method of weighting groups of spots for .

[less]

Contributed by: Milena C. Cuellar (March 2011)
After work by: Ed A. Spiegel
Based on a program by: Tijana Ivancevic
Open content licensed under CC BY-NC-SA


Snapshots


Details

[1] E. A. Spiegel, "Chaos and Intermittency in the Solar Cycle," Space Sci. Rev., 144(1–4), 2009 pp. 25–51.

[2] C. Pasquero, "Modelli di Variabilitá Solare", PhD thesis, Universitá di Torino, Facoltá di Scienze M.F.N., 1995.

[3] N. Platt, E. A. Spiegel, and C. Tresser, "The Intermittent Solar Cycle," Geophys. Astrophys. Fluid Dyn., 73(1–4), 1993 pp. 147–161.



Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.
Send