10214

# Circular Hole Drilled in a Cone

This Demonstration lets you explore the shape of the difference between a cone and a circular cylinder.

### DETAILS

Consider a cylinder of radius , with axis at a distance from the axis and at a height above the - plane. Its parametric equations are
,
,
,
where and are parameters.
The parametric equations of a right cone with base radius and height are
,
,
,
where and are parameters.
The intersection curve of the two surfaces can be obtained by solving the system of three equations
for three of the four parameters . In this Demonstration, solving for , , and gives the parametric equations for the intersection curve with parameter (the curve consists of two parts, depending on the sign inside the equation for ):
,
,
,
with
and
.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.