Circumcircles of Two Midpoints and an Altitude

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram CDF Player or other Wolfram Language products.

Requires a Wolfram Notebook System

Edit on desktop, mobile and cloud with any Wolfram Language product.

In the triangle let and be the midpoints of the sides and and let be the foot of the altitude from to . Prove that the circumcircles of the triangles , , and have a common point and that the line passes through the midpoint of the segment .

Contributed by: Jaime Rangel-Mondragon (July 2013)
Open content licensed under CC BY-NC-SA


Snapshots


Details

This Demonstration comes from problem 6 of the shortlisted problems for the 1970 International Mathematical Olympiad (IMO).

Reference

[1] D. Djukić, V. Janković, I. Matić, and N. Petrović, The IMO Compendium, 2nd ed., New York: Springer, 2011 p. 69.



Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.
Send