Comparing Exact and Approximate Censored Normal Likelihoods

A random sample of size is simulated from a left-censored standard normal distribution with censor point , where is the censor rate and is the inverse cumulative distribution function of the standard normal distribution. The Demonstration shows the exact relative likelihood function for the mean of the underlying distribution (blue curve) as well as a crude approximation (red curve) that ignores censoring. When is close to zero, the crude approximation is reasonable, but as increases, the exact method becomes more and more accurate. The blue and red lines show corresponding point estimates for the exact and approximate estimates. while the gray line shows the true parameter value. By varying the random seed, you see the stochastic nature of estimates; for example, sometimes the crude estimator may be more accurate, even though overall, on average, it is less accurate when .


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Snapshot 1. The quantile plot of the data used in the thumbnail is shown. From the plot, and there were five censored values, so the empirical censor rate was 20%.
Snapshot 2. Even though the crude estimator is always statistically less efficient, it can happen by chance that the crude approximation is more accurate than the exact maximum likelihood method as shown in snapshot 2. A simulation experiment found that this happens about 43% of the time with even though the crude estimator has only about 72% efficiency. As or increases, the efficiency of the crude estimator decreases.
Snapshot 3. The sample size is increased to 100 and the resulting relative likelihoods become narrower, indicating the increase in precision.
The right-censored case is discussed in [1] and the results for the left-censored case may be derived in a similar way. As in [1], the EM algorithm [1] is used to compute the exact maximum likelihood estimate. For computation efficiency, Mathematica's built-in function Compile is used. The relative likelihood is the likelihood rescaled so its maximum value is 1.0. It can be used directly for statistical inference [2].
[1] C. P. Robert and G. Casella, Monte Carlo Statistical Methods, 2nd ed., New York: Springer, 2004.
[2] Wikipedia. "Likelihood Function." (Jul 2, 2013) en.wikipedia.org/wiki/Likelihood_function# Relative_likelihood.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+