Complete-Mixing Model for Gas Separation by Membranes

Gas permeation uses polymer or ceramic membranes. For example, helium can be separated from natural gas with a fluorocarbon membrane.
Consider a binary mixture composed of and to be separated by a membrane. and have different permeabilities and thus diffuse at different speeds through the membrane.
When the permeate flow rate is a small fraction of the feed rate, the complete-mixing model provides a reasonable estimate of the permeate mole fraction. The solution of the following equations gives the reject and permeate compositions for such a model:
and ,
where , , and .
This Demonstration displays the mole fraction of the reject and permeate in blue and red, respectively.
In the above equations and definitions is the feed composition, is the ideal separation factor (defined as the ratio of the permeabilities of species and ), is the pressure ratio (i.e., the feed-side pressure over permeate-side pressure), is the cut or fraction of feed permeated (), and and are the permeate and reject compositions.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


C. J. Geankoplis, Transport Processes and Unit Operations, 3rd ed., Englewood Cliffs, NJ: Prentice Hall, 1993.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+