Complex Number

This Demonstration shows the basic elements of representations of a complex number in a two-dimensional Cartesian coordinate system or in a polar coordinate system.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


A complex number can be visually represented using a two-dimensional Cartesian coordinate system as an ordered pair of real numbers on the complex plane. The representation of a complex number in terms of its Cartesian coordinates in the form , where is the imaginary unit, is called the algebraic form of that complex number. The coordinate is called the real part and the imaginary part of the complex number, respectively. The absolute value (or the modulus) of a complex number is defined by .
Alternatively to the Cartesian system, the polar coordinate system may used. In polar coordinates , the radial coordinate and the angular coordinate , where , is called the argument (or angle) of the complex number . A complex number is then represented in the trigonometric form , or in the exponential form . In technical applications the argument is often chosen from the interval and it is called phase. The corresponding exponential form is then called phasor form.
(Author was supported by project 1ET200300529 of the program Information Society of the National Research Program of the Czech Republic and by the Institutional Research Plan AV0Z10300504; the Demonstration was submitted 2008-10-01.)
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Related Curriculum Standards

US Common Core State Standards, Mathematics

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+