Concurrency via Midpoints

Let ABC be a triangle and P be an internal point. Let AP, BP, and CP intersect the sides BC, CA, and AB in A', B', and C'. Let L, M, and N be the midpoints of the sides of ABC and L', M', and N' be the midpoints of the sides of A'B'C'. Then LL', MM', and NN' are concurrent.

THINGS TO TRY

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

RELATED LINKS

    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.