10230

# Concurrent Lines that Intersect on the Euler Line

The Euler line of a triangle goes through the circumcenter and the orthocenter.
Let ABC be a triangle. Let O be the circumcenter and H the orthocenter of ABC. Let the intersection of AO, BO, and CO with the circumcircle be , , and , respectively. Let the intersection of , , and with the circumcircle be A', B', and C', respectively. Let the intersection of AH, BH, and CH with the circumcircle be A'', B'', and C'', respectively. Then A'A'', B'B'', and C'C'' are concurrent with the Euler line.

### DETAILS

See problem 5 for day 2 in the Iranian 2005 National Math Olympiad (3rd round).

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.