Conway's Billiard Ball Loop

A billiard path is a polygon with vertices on the faces of a polyhedron such that if two segments meet at a vertex on a face , the plane through them is perpendicular to and the angle they form is bisected by the normal to at . A billiard ball loop is a closed billiard path.
This Demonstration shows a loop of a billiard ball in a regular tetrahedron discovered by J. H. Conway. Each vertex is a vertex of a triangle on a face with side length one-tenth the length of an edge of the tetrahedron. There are three such loops.


  • [Snapshot]
  • [Snapshot]


[1] D. Wells, The Penguin Dictionary of Curious and Interesting Geometry, London: Penguin Books, 1991 p. 14.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.