9827

Curves through Given Points in the Plane

In this Demonstration we construct curves through two, three, or five specified points in the plane. The three buttons correspond to a construction of a line through two distinct points, a circle through three distinct points, and a general conic section (ellipse, parabola, or hyperbola) through five distinct points, respectively. In each case, dragging the points, we can obtain degenerate curves by making one or more points coincide.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

We can construct a line through two distinct points () and () in the plane by considering that both points satisfy the linear equation , that is, we should have and with coefficients , , and not all zero. Take these three equations together and we obtain a homogeneous linear system of three equations for the unknowns , , and . Since , , and are not all zero, the explicit equation for the given line can be written as .
In the case of a circle, three distinct points in a plane determine a curve with quadratic equation with coefficients , , , and not all zero. Once more, considering this equation together with the three equations for the distinct points (), () and (), we conclude the explicit equation for the circle as .
For a general conic section (ellipse, parabola, or hyperbola), five distinct points determine the curve uniquely. Using the same notation as in Conic Section, the general quadratic equation has the form , with coefficients , , , , , and not all zero. Similarly to the previous cases of the line and the circle, the explicit equation for the given conic can be obtained by setting the determinant of the matrix corresponding to the homogeneous linear system of six equations for the unknowns , , , , , and , equal to zero.
Reference
H. Anton and C. Rorres, Elementary Linear Algebra: Applications Version, New York: John Wiley & Sons, 1994.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+