10217

Let be the surface of a cylinder of height and radius . ( does not include the flat circular ends of the cylinder.) This Demonstration constructs a set of triangles that tend uniformly to —yet their total area does not tend to the area of !
Divide into subcylinders (or bands) of height . Construct congruent isosceles triangles in each band with vertices at the vertices of a regular -gon inscribed in the circles at the top and bottom of each band, offset by .
For any point in (except the axis of the cylinder), let be the axial projection of onto . As , to say that the triangles approximate uniformly means that for any point on a triangle and any (independent of ), there is a such that for all , .
The sum of the areas of the triangles is
.
Depending on how the limit is taken, can differ. If first with held fixed and then , the limit is , the expected area of the cylinder. If first with held fixed and then , the limit is infinity. If and together so that is some positive constant , the limit can be chosen to be any number greater than .
Therefore does not have a limit.
The surface is known as Schwarz's lantern, Schwarz's polyhedron, or Schwarz's cylinder.

### DETAILS

For details, see Freida Zames' Surface Area and the Cylinder Area Paradox.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.