9711

Damped Spherical Pendulum


This Demonstration traces the path of the bob on a damped spherical pendulum. The pendulum is suspended at the center of an imaginary sphere that marks the outer bounds of the center of the bob.
The equations of motion are
,
,
where and are the spherical coordinates of the center of gravity of the bob. The pendulum rod has length (with no loss of generality) and bob mass . The damping coefficient of the system is . The initial angular positions are and and the initial angular speeds are and .

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Choose a set of parameters with the sliders or click the "randomize" button and start the animation. Run the animation to the end and press the "randomize parameters" button to discover a variety of bob trajectories.
A damping term is added to the equations of motion for the spherical pendulum programmed by Franz Brandhofer.
See also: A. Ertas and S. Garca, "Experimental Investigation of Dynamics and Bifurcations of an Impacting Spherical Pendulum," Experimental Mechanics, 49(5), 2009 pp. 653–662.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+