11246

# Dedekind Cut

Dedekind invented cuts to construct the real numbers from the rationals. Another method is to use Cauchy sequences.
Split the rationals in two disjoint sets A and B, such that all the elements of A are smaller than all the element of B. This is called a cut. There are four cases: A has a largest element or not, and B has a smallest element or not.
The case where A has a largest element x and B has a smallest element y is impossible. On the one hand, the average of x and y, being a rational, must belong to one of A or B. On the other hand, their average cannot belong to A (because ) nor to B (because ).
If there is a largest element of A or a smallest element of B, then the cut is rational.
In the fourth case, the most interesting one, A does not have a largest element and B does not have a smallest element. In that case the cut is irrational.
This visualization draws circles with rational radii smaller than 1. Examples of rational cuts are selected from these, with a red circle used to indicate that the rational is included in one of the two sets. Examples for irrational cuts are generated as multiples of .

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.