10230

# Derivation of Thermodynamic Derivatives Using Jacobians

Rules from the book by M. Tribus are explored to deduce specified thermodynamic derivatives of the thermodynamical variables (energy , enthalpy , free energy of Helmholtz , free energy of Gibbs , entropy , temperature , pressure , and volume ) as functions of measurable quantities (temperature , pressure , volume , coefficient of thermal expansion , coefficient of compressibility , heat capacity at constant pressure , and heat capacity at constant volume ). Sometimes the entropy will remain outside the derivatives.

### DETAILS

The main thermodynamical variables are energy , enthalpy , free energy of Helmholtz , free energy of Gibbs , entropy , temperature , pressure , and volume .
It is possible to form 336 partial derivatives of the type , where , , and are among these eight variables.
It is possible to express one derivative in terms of three outer derivatives. Among the 336 derivatives there are approximately combinations, but only a small fraction of them have practical value.
The Jacobian notation shows thermodynamic derivatives in an elegant manner. The application of Jacobians in thermodynamics appears to have started with Bryan [1].
A collection of Jacobian expressions is presented in [2] and [3].
Based on a suggestion made by E. Jaynes, Tribus developed rules for the deduction of thermodynamic partial derivatives [4]. For efficiency a new rule is added.
[1] G. H. Bryan, (article title unknown), Encyklopedie der mathematishen Wissenschaften, Bd V, Teil 1, A. Sommerfeld, ed., Leipzig: G. B. Teubner, 1903 p. 113.
[2] P. W. Bridgman, A Condensed Collection of Thermodynamic Formulas, Cambridge: Harvard University Press, 1925.
[3] A. N. Shaw, "The Derivation of Thermodynamical Relations for a Simple System," Phil. Trans. Roy. Soc. A, 234(740), 1935 pp. 299–328.
[4] M. Tribus, Thermostatics and Thermodynamics, Princton, NJ: Van Nostrand, 1961.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.