Descartes's Geometric Solution of a Quadratic Equation

This Demonstration shows Descartes's geometric solution of the quadratic equation in the unknown . Consider a circle of radius and let the points and be at and ; the circle meets the negative axis at . Let the vertical line through intersect the circle at and . The solutions are then given by the intersections of the circle and the line. Thus the lengths and are the two roots and of the original quadratic equation. When , the vertical line does not intersect the circle, meaning that the solutions to the quadratic are complex numbers. The slider is therefore stopped at .
The well-known exact solutions to the above quadratic equation are .


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


By Pythagoras's theorem, the and components of both points and are given by , with Thus and . It follows then that and , giving the two roots of the quadratic equation.
[1] P. J. Nahin, An Imaginary Tale: The Story of i, Princeton: Princeton University Press, 1998.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+