11453

Discriminant of a Polynomial

This Demonstration shows the discriminant of the polynomial . The discriminant of a polynomial of degree is the quantity , where is the derivative of and is the resultant of and . The resultant is equal to the determinant of the corresponding Sylvester matrix. The discriminant of is 0 if and only if has a multiple root.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The discriminant of a polynomial with leading coefficient 1 is the product over all pairs of roots , of .
The equation relates the discriminant and resultant.
To calculate the discriminant, we use the built-in Mathematica function Discriminant. The other way is to calculate the resultant using the Sylvester matrix and then the discriminant from the above equation.
For the meaning of the matrix/grid, see Sylvester Matrix.
Reference
[1] E. J. Borowski and J. M. Borwein, Dictionary of Mathematics, London: Collins, 1989 p. 169.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+