11266

Domino Substitution Tilings

Tiling substitution rules specify how to fill and then subdivide a tile into copies of itself. Iterating these rules, we can form larger and larger "supertiles" and ultimately define substitution tilings, which are divisions of the plane into infinite hierarchies of supertiles. The configuration shown here, of four dominoes (2×1 rectangles, also known as dimers) forming a larger one, does not give a well-defined substitution rule: in order to iterate such a rule, we must further specify how the smaller dominoes are oriented in the large one, possibly with several choices.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The forthcoming paper "Lots of Aperiodic Sets of Tiles" gives, for each substitution rule in this Demonstration, a set of marked tiles that can form only tilings with the structure generated by the rule, increasing the number of explicitly described aperiodic sets of tiles several hundredfold. This Demonstration illustrates the rich variety of these systems.
The substitution rule is specified by the 16 triangular buttons at the top left. The depth of the substitution is controlled by a selector. The tiling may be displayed in black and white or in color.
Deterministic substitution rules allow, at most, one choice of orientation per domino. Otherwise, choices are made randomly, and it is interesting to regenerate the supertile.
The code at the bottom of the Manipulate is used to refer to specific rules.
References
[1] Wikipedia. "Substitution Tiling." (Jun 27, 2016) en.wikipedia.org/wiki/Substitution_tiling.
[2] Tilings Encyclopedia. "Substitution." (Jun 27, 2016) tilings.math.uni-bielefeld.de/glossary/substitution.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+