9755

Dynamic Behavior of an Addition Polymerization in a Batch Reactor

An activated monomer is obtained by the reaction .
Higher molecular weight polymers are obtained by the reaction .
This Demonstration solves the system of second-order rate equations for user-set values of the activation rate constant, , and the polymerization rate constant, .
In addition, the monomer and polymers concentrations, up to , are plotted versus time.
The mass balance equations are
,
, for ,
.
You can easily see by looking at the equations that is a decreasing function of time. Thus, after a certain time and all species reach a steady-state value because the polymerization reactions will stop when the monomer is exhausted.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

S. M. Walas, Chemical Reaction Engineering Handbook of Solved Problems, New York: Gordon and Breach Publishers, 1995 pp. 286–287.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+