Dynamic Billiards in Ellipse

Dynamic billiards studies the motion of a small billiard ball (subject to no friction) on a pool table as it undergoes elastic collisions with the boundary (elliptical in this case). Alternatively, one can think of the path a light ray would take in the interior of a reflective boundary.
This Demonstration lets you choose the position and direction on the boundary at which the ray is injected into the interior of the ellipse (the red arrow). The "aim" buttons aim the ray at either focus, drawn in blue (they can be hidden via the "foci" checkbox). A well-known property of the ellipse is that a ray through a focus will bounce off the wall once and then pass through the other focus. You can specify the number of reflections and the ellipse's semiaxes, and . The eccentricity of an ellipse is the ratio of (the distance from the center of the ellipse to a focus) to the maximum of and .
In addition to the focus-to-focus property, what is particularly fascinating in this experiment is to visualize ray paths that do not pass through a focus. To do this, set the number of reflections to a large number (100 to 200), and watch what happens to the path as the position and angle are varied. A few stunning results to notice:
1. If the entering ray passes between the two foci, all the subsequent rays will be confined to that zone; they will be bounded by the two branches of a hyperbola (this virtual boundary is called a "caustic", from the Greek word for "heat"). Conversely, if the entering ray passes between a focus and one of the ellipse's vertices, all subsequent rays will be bounded by a confocal elliptical caustic: a smaller ellipse that shares the same foci as the original one.
2. For most settings of position and rotation, a path with many reflections will be disorganized and space-filling. However, for a sparse set of combinations, the path suddenly regularizes, yielding beautiful stable patterns, some of which have been collected here. These can contain 2, 3, 4, to any number of links.
The constraints on position, rotation, and eccentricity that form closed paths are not obvious (except for trivial cases) and are related to roots of high-order polynomials (quintic and up).



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


[1] O. Knill. "Billiards." (Oct 18, 2011) www.dynamical-systems.org/billiard/info.html.
[2] S. Tabachnikov, Geometry and Billiards, Providence, R.I.: American Mathematical Society, 2005. www.math.psu.edu/tabachni/Books/billiardsgeometry.pdf.
[3] Wikipedia. "Dynamical Billiards." (Oct 18, 2011) en.wikipedia.org/wiki/Dynamical_billiards.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+