Effective and Inertial Masses of a Photon Near a Black Hole for a Family of Envelope Orbits

Photons move along geodesic paths, which are bent in a gravitational field. This allows one to assume that the photon has a finite inertial mass. This Demonstration shows how the effective and inertial masses change as functions of the distance to the center of gravity and the motion constant for the photon's orbits near a black hole with minimum radius . The unit of distance is chosen as the Schwarzschild radius, such that .


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The normalized effective mass of a photon can be defined by the proportionality between the canonical momentum and the four-velocity , such that . In a central gravitational field, the normalized inertial mass is found from , where is the radial component of the canonical force vector. The relation between and is obtained from the condition , leading to the constant of motion .
The decrease of the coordinate velocity in most of its trajectory in the gravitational field is known as the Shapiro time-delay effect. It can be pictured as a negative inertial mass for the photon. By contrast, a positive mass particle accelerates as it approaches the center of gravity.
For further technical details, please refer to W. Belayev, "Application of Lagrange Mechanics for Analysis of the Light-Like Particle Motion in Pseudo-Riemann Space," 2009, http://arxiv.org/abs/0911.0614.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+