Eisenstein Snowflakes

The Eisenstein integers are a ring of complex numbers that cover the Gaussian plane in a triangular lattice. Each number is the sum of a regular integer and an integral multiple of ω, the positive third root of unity. Eisenstein integers share many properties of the regular integers, including well-defined prime numbers and GCDs. This Demonstration shows the so-called totients of a given Eisenstein integer—that is, the integers below the number that share no factors with that number. It is simply a happy holiday coincidence that the resulting patterns resemble snowflakes.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The controls allow you to change the two parts of the Eisenstein integer: the real part and the part that extends into the complex plane at a 120° angle.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.