# Electromagnetic Wave Incident on a Dielectric Boundary

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram CDF Player or other Wolfram Language products.

Requires a Wolfram Notebook System

Edit on desktop, mobile and cloud with any Wolfram Language product.

This Demonstration shows an electromagnetic wave incident on a planar dielectric boundary in terms of the Poynting vector on both sides of the boundary. Taking the incident plane and boundary planes to be and , respectively, the resulting Poynting vector pattern is shown on the incident - plane. The incident wave is assumed to be linearly polarized either horizontally or vertically with respect to the electric field. (The horizontal wave and vertical wave are sometimes called the p-wave and s-wave, respectively.) In all the cases, the power density (Poynting vector intensity) of the incident wave is set to on average, that is, to peak at.

[more]
Contributed by: Y. Shibuya (October 2013)

Open content licensed under CC BY-NC-SA

## Snapshots

## Details

Snapshot 1: horizontally polarized incident wave with

Snapshot 2: horizontally polarized incident wave with ; the case of total reflection

Snapshot 3: vertically polarized incident wave with ; the case of no reflection

According to Fresnel's equations for the horizontally polarized incident wave's electric field , transmitted and reflected fields are expressed by and . Similar calculations can be made for the vertically polarized incident wave.

Generally, the upper half-space accommodates two waves: incident and reflected; therefore, the Poynting vector pattern is made up of undulating patterns. On the other hand, the lower half accommodates the transmitted wave only, showing a straight plane wave, provided . In the special case of Snapshot 3, the upper space shows the pattern of one plane wave, since there is no reflected wave.

Reference

[1] J. A. Stratton, *Electromagnetic Theory*, New York: McGraw-Hill, 1941 pp. 483–600.

## Permanent Citation