11284

# Endogeneity Bias

Endogeneity is one of the major concerns of contemporary empirical studies in economics and econometrics. This Demonstration aims to show the geometric sense of this phenomenon in the simplest setting, namely the model with one single explanatory variable (also known as the independent variable).
We use a population regression function [1] of the simple form , where and are true parameters that are never known, to generate observable data of the form , where is the error term (or disturbance) for each simulated observation . Simulated variation of the error term is controlled by the parameter . The purpose of fitting methods such as ordinary least squares (OLS) is to estimate true parameters of the model given observable data. A fitted model usually has the form (sample regression function [1]).
The parameter is most important for this Demonstration. It is used to model the correlation between the vectors and , that is, if , then there is no covariance between the vectors; otherwise there is covariance that is maximal at (or ).

### DETAILS

Endogeneity bias (in the narrow sense) is applicable to the model if . Whenever (meaning that the independent variable is not correlated with the error term ), there is no endogeneity bias (in the narrow sense). In this case, the slope of the fitting curve (OLS regression line) converges to the slope of the true line with the growth of the number of observations , or .
On the contrary, with endogeneity bias there is no such convergence and the fitting model gives inconsistent estimates of in terms of . You can also see a geometric representation of endogeneity in that simple case when observations (points on the plot) lie systematically lower or higher than a given true line. That is what makes OLS fitting pointless in the presence of endogeneity bias. There are many reasons of endogeneity, namely, omitted variables, measurement errors, and simultaneity. Methods such as using a control function or instrumental variables (IV) can be applied to cure the endogeneity bias problem.
This Demonstration is designed to generate random data by clicking the "generate data" button. You can vary the parameters: is the number of observations, is both (for simplicity of the model) the expectation and the standard error of the random variate , and is the standard error of the normally distributed error term with 0 expectation.
Reference
[1] J. M. Wooldridge, Introductory Econometrics: A Modern Approach, Mason, OH: South-Western, Cengage Learning, 2009 p. 26.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.
 © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS
 Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX Download or upgrade to Mathematica Player 7EX I already have Mathematica Player or Mathematica 7+