Equal Cores and Shells in Circles and Spheres

The area of the red circular ring between the radii and is given by . This is equal to the area of the blue disk of radius given by if the three radii satisfy . Visually, the equality of the areas of the shell and disk is often not very obvious, which might loosely be classed as an optical illusion.
The 3D analog compares the volume of a red spherical shell and a blue central sphere. Recall that the volume of a sphere of radius is given by . The relation between radii is now given by . The spheres are shown in transparent hemispherical cross section.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Integer triplets , , such that such as , , , and so on are the well-known Pythagorean triplets. By the Fermat–Wiles theorem (formally known as Fermat's last theorem), there are no analogous integer triplets for cubes.
Snapshot 1: equality of the areas of the shell and disk is not visually obvious
Snapshot 2: these radii belong to the simplest Pythagorean triplet , scaled by factor of 4
Snapshot 3: when , the circle is bisected azimuthally
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+