Erdös-Szekeres Tableaux

The Erdös–Szekeres tableau of a permutation is the sequence of points where (respectively ) is the length of the longest increasing (respectively decreasing) subsequence ending at . Since different permutations can have the same Erdös–Szekeres tableau (EST) (e.g. and both have the same "N-shaped" EST), there is an equivalence relation on permutations . The poset is defined by taking the intersection over all orderings induced by elements of . Informally, the poset records those relations that can be recovered from the EST. The lattice is defined on , where is in the covering relation if and differ by an adjacent transposition (which can be viewed as an edge label) and precedes lexicographically.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

This Demonstration illustrates concepts developed in [1]. The green curve in the first pane visualizes a permuatation by plotting the points for .
Reference
[1] S. V. Ault and B. Shemmer, "Erdös–Szekeres Tableaux," Order, 13, 2013. doi: 10.1007/s11083-013-9308-2.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.