10176

# Euler's Substitutions for the Integral of a Particular Function

Euler's substitutions transform an integral of the form , where is a rational function of two arguments, into an integral of a rational function in the variable . Euler's second and third substitutions select a point on the curve according to a method dependent on the parameter values and make the parameter in the parametrized family of lines through that point. Euler's first substitution, used in the case where the curve is a hyperbola, lets be the intercept of a line parallel to one of the asymptotes of the curve. This Demonstration shows these curves and lines.
In symbolic calculations, the Demonstration shows:
1. If , the substitution can be . We only consider the case .
2. If , where and are real numbers, the substitution is .
3. If , the substitution can be . We only consider the case .
In all three cases, a linear equation for in terms of is obtained. So , , and are rational expressions in .

### DETAILS

Consider the curve (1) and a point on it. The straight line (2) through intersects the curve in another point . Eliminating from (1) and (2) gives
(3).
From that, and since
,
(3) becomes
,
which simplifies to
.
So is a rational function of , is a rational function of , and because of (2), is a rational function of .
So the relation
defines the substitution that rationalizes the integral.
Suppose that the trinomial has a real root . Then we get Euler's second substitution taking ,
.
If , then the curve intersects the axis at , which must be the point . This is Euler's third substitution
.
In the case of Euler's first substitution, the point is at infinity, , so the curve is a hyperbola. An asymptote is . We are looking for the intersection of the curve by straight lines that are parallel to the asymptote. The intersection of such a line gives a point , which is rational in terms of . This gives Euler's first substitution
.
Reference
[1] G. M. Fihtenholjc, Lectures in Differential and Integral Calculus (in Russian), Vol. 2, Moscow: Nauka, 1966 pp. 56–60.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.