10178

# Exit Times of Brownian Motion in 3D

The expected first exit time of a particle in Brownian motion starting from a point with position vector from a ball of radius in dimensions is . We demonstrate this for . Choose the radius of the ball, the position of the initial point, and the number of paths; vary the duration of motion until all the paths hit the boundary. The expected exit time and the average of the exit times for the particular sample generated are displayed in the lower left corner. Once a Brownian path hits the boundary, it no longer changes and further increasing the duration of motion has no effect.

### DETAILS

The formula for the expected first exit time can be easily deduced from the well-known formula of Dynkin for the expected value of a -function in at a finite stopping time (see B. K. Øksendal, Stochastic Differential Equations, pp. 120–122). It is interesting to note that when the starting point is taken outside the disk, there is a startling difference between the cases and . In the former the Brownian path eventually enters the disk with probability 1; in the latter the expected entry time is infinite. In the Demonstration one can choose the initial point outside the ball, but, of course, in this case no conclusions about the expected entrance time can be drawn from the simulation.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.