Extended GCD of Quadratic Integers

Consider the quadratic field and the associated ring of integers , where if and if . We assume is principal but not necessarily Euclidean. We compute the GCD of two elements , of modulo a unit of . The computation also gives explicit coefficients , for the Bézout identity . This is done by reducing binary quadratic forms and considering the sum of ideals as the ideal , with .


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


This algorithm computes the GCD of two quadratic integers; it does this by combining the following operations:
1) compute the sum of two ideals of and put the ideal result into canonical form: , , so that the norm of this ideal is then .
2) find a generator of an ideal (an element such that is equal to the norm of the ideal, that is, ). Recall that the norm of an element is , where if and if .
3) represent the integer 1 by a binary quadratic form.
This method is quite efficient for small quadratic integers, but could be lengthy for large numbers.
[1] D. A. Buell, Binary Quadratic Forms, New York: Springer–Verlag, 1989.
[2] A. Miled and A. Ouertani, "Extended GCD of Quadratic Integers," arXiv, 2010.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+