10537

Feinberg-Horn-Jackson Graph

In reaction network theory, the Feinberg–Horn–Jackson graph plays a very important role. Reaction kinetics can be viewed abstractly as a directed graph in which the vertex set contains the complexes; there is an edge between two complexes if and only if there is a reaction step between them.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

By a complex chemical reaction we mean a set of reaction steps , where are chemical species (molecules, radicals, ions, etc.), the non-negative integers and are the stoichiometric coefficients or molecularities, and the formal linear combinations and are the reactant and product complexes, respectively.
The Feinberg–Horn–Jackson graph of a complex chemical reaction is the directed graph , where the vertex set is the set of different reaction complexes and the arrows are the reaction steps.
For more information see Chemical Reaction Network Theory.
Reference
[1] P. Érdi and J. Tóth, Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models, Manchester: Manchester University Press, 1989.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2016 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+