10214

# Filling a Container Defined by a Curve

The graphic on the left shows the profile of a circularly symmetric container centered on the vertical axis. Its shape is controlled by moving the locators and selecting either a curved profile or linear segments joining the locators. As you move the slider, the height of the fluid changes. The graph on the right shows either fluid height as a function of volume or fluid volume as a function of height.

### DETAILS

Teaching suggestions: As a precalculus exercise, before moving the slider to the right, try to sketch for a particular container shape. First try this with simple containers whose profiles are linear segments and then try curved profiles. For a calculus exercise, indicate on the sketch where the curves are concave up, concave down, or neither. Where are the inflection point(s), if any? What is the relationship between and ? Students might find it easier to sketch if they think of pouring a liquid into the container at a constant rate and then considering .

### PERMANENT CITATION

Contributed by: Bruce Atwood (Beloit College)
 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.