Finding Strange Attractors of Iterated Maps

This Demonstration searches for strange attractors of a nonlinear two-dimensional polynomial map. Both the and the polynomial maps of degree are defined by coefficients , one for each term , , .
To find an attractor, we compare two orbits of the map with the same coefficients but starting from nearby initial points. If the orbits become unbounded or move apart, another set of random coefficients is selected. If successive iterations move the orbits increasingly closer together, an attractor is detected and plotted and the search is stopped.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The strange attractors from the map used in this Demonstration and many others are described extensively in [1].
[1] J. C. Sprott, Strange Attractors: Creating Patterns in Chaos, New York: M&T Books, 1993.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.